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Consider the principle that for a given agent S, and any proposition p, it is
metaphysically possible that S is thinking p, and p alone, at time t. According
to philosophical folklore, this principle cannot be true, despite its initial appeal,
because there are more propositions than possible worlds: the principle would
require a different possible world to witness the thinking of each proposition,
and there simply aren’t enough possible worlds to go around.1 Some theorists
have taken comfort in the thought that, when taken in conjunction with facts
about human psychology, the principle was not on particularly firm footing to
begin with: most propositions are far too complicated for any human to grasp,
much less think uniquely.2

However, in 1961 Arthur N. Prior made a striking observation that under-
mines this diagnosis.3 Prior constructively provides an example of a proposition
which cannot be thought by S at t, and thought alone, and, moreover, it is one
that is not particularly complex or difficult to grasp.4 Indeed, we have every
reason to believe that agents other than S can think it at t, and that S herself
can think this proposition at times other than t. Prior’s proposition is simply
the proposition that everything that S is thinking at t is false. The fact that
S cannot think this proposition uniquely at t follows from a general theorem
of quantified propositional logic supplemented with a single unary operator Q.
The language of quantified propositional logic results from that of propositional
logic when we add a stock of propositional variables that take sentence position,
a quantifier that binds them:5

∗Thanks to Jeremy Goodman for feedback on an earlier version of the paper, and thanks
to audiences at the University of St. Andrews.

1This argument, attributed to Kaplan, is discussed by Martin Davies in Davies (1981)
appendix 9, and by many others subsequently (Kaplan’s own discussion didn’t appear until
Kaplan (1995)). Kaplan’s puzzle begins with the observation that if the set of all worlds
has cardinality κ, then the set of all propositions, determined by sets of worlds, must have
cardinality 2κ. This is incompatible with the further assumption that for each proposition
p, and a given agent and time, there is a world in which the agent thinks p, and only p, at
the given time. Otherwise, we would have a map f from a set of worlds onto the set of all
propositions, i.e., the power set of the set of all worlds, which is ruled out by Cantor’s theorem.

2See Lewis’s discussion in §2.3 Lewis (1986).
3Prior’s observation predates the literature on Kaplan’s paradox, but its significance to

that discussion has for the most part been overlooked. See Prior (1961).
4Indeed the assumption that Prior’s proposition is thought uniquely is not only metaphys-

ically impossible but logically incoherent.
5The resources needed to prove Prior’s theorem are surprisingly minimal: you only need
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Theorem. (Prior’s Theorem) Q∀p(Qp→ ¬p) → ∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p)

This result is perfectly general. In the above, Q may be read as any sentential
operator such as “it is not the case”, “it is necessary that”, etc. However, on its
most puzzling interpretations, it is read in terms of some propositional attitude
such as “it is thought that”, “it is said that”, “it is feared that” or “it is hoped
that”. In particular, Prior’s observation tells us that an agent cannot, at a given
time, think the Prior proposition ∀p(Qp→ ¬p), which we abbreviate λ, without
thinking a true and a false proposition at the relevant time. So, one cannot be
thinking uniquely that everything one is thinking is false.6

1 From Russell to Prior

Those familiar with the semantic paradoxes will have noticed a striking resem-
blance with the liar paradox.7 Less obvious is the connection between Prior’s
paradox and Russell’s. The latter turns on a simple theorem of the predicate
calculus:

¬∃x∀y(Ryx↔ ¬Ryy)

As with Prior’s result, this theorem is perfectly general: R could be interpreted
to mean any binary relation. Suppose an object a bears R to all and only those
objects that do not bear R to themselves. Then a bears R to itself if and only
if it doesn’t, which is inconsistent. For example, taking R to mean “shaves”,
it follows that there is no barber who shaves all and only those who do not
shave themselves. Russell’s paradox arises when we let R mean: “is a member
of”. On this interpretation, the above theorem tells us that no set can have as
members all and only non-self-membered sets.

This theorem also has a straightforward connection to Prior’s paradox. To
fix ideas, let us assume a simple model of propositions on which they are sets

classical propositional logic and universal instantiation for the propositional quantifiers. Weak-
ening universal instantiation allows one to block the theorem, but as argued in Bacon et al
Bacon et al. (2016) this move leaves us exposed to other problems.

6Prior’s proposition is related to a familiar diagonal argument for Cantor’s theorem that
there is no function from the set of worlds W onto the set of sets of worlds PW : suppose
f : W → PW maps W onto PW and consider Λ = {w ∈ W : w /∈ f(w)}. If w is such that
f(w) = Λ, then w ∈ Λ iff w /∈ Λ. If we interpret f as mapping w to the set of worlds at which
belong to some proposition thought at w, then Λ just becomes the set of worlds at which
Prior’s proposition is true. It follows that at no world is one thinking propositions whose
disjunction is necessarily equivalent to Prior’s proposition. Thus, in particular, it follows that
Prior’s proposition is not thought uniquely at any world. A similar connection is explored in
Moore (1984) (above we exploited a proof that no function from W to P(W ) is onto, whereas
Moore exploits a proof that no function from P(W ) to W is one-one. Since there many worlds
at which any given proposition is thought uniquely, Moore’s analysis requires the axiom of
choice, whereas ours does not).

7Unlike the liar, however, Prior’s theorem is provable in quantified propositional logic
without appeal to any controversial disquotational premises.
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of possible worlds.8 Let us introduce a binary relation, Rxy, on W , which we
shall pronounce as ‘y is accessible from x’:9

Accessibility Rxy if and only if some proposition thought at x is true at y.

If x is not accessible to itself, then no proposition thought at x is true at x. When
we interpret the Prior sentence ∀p(Qp → ¬p) (henceforth, λ) in this setting, it
expresses the set of worlds where no proposition thought at that world is true at
that world. Thus Prior’s sentence just expresses the set of worlds that are not
accessible to themselves. Russell’s theorem immediately tells us that there is no
world which is accessible from all and only the worlds that are not accessible to
themselves, i.e., the worlds at which Prior’s proposition is true. It follows that
there is no world at which we think λ and nothing else. For the worlds accessible
to such a world x would be exactly those worlds at which λ is true, i.e., worlds
that are not accessible to themselves, contradicting the theorem above.

In fact, Russell’s theorem suggests a strengthening of Prior’s result. After we
learn that some propositions cannot be thought uniquely, one is led to wonder
whether , for n > 1, there are n propositions p1, ..., pn such that one cannot
think all of them without thinking any further propositions. The answer is
yes. Take n propositions p1, ..., pn whose disjunction is necessarily equivalent
to λ. Then if I think p1, ..., pn, and nothing else, at a world x, then the worlds
accessible to x are exactly the worlds at which at least one of p1, ..., pn is true.
But those are exactly the worlds at which λ is true, which by the above argument
is impossible.

This style of argument can be turned into a proof in quantified propositional
logic. Suppose the disjunction of p1, ..., pn is materially equivalent to λ. Now,
assume I’m thinking all of p1, ..., pn. Then, if λ is true, all of p1, ..., pn are
false and their disjunction cannot be materially equivalent to λ. Thus some
proposition q I’m thinking is true. However, q cannot be one of p1, ..., pn, since
otherwise their disjunction would be true and thus not materially equivalent to
λ. It follows that I can only think all of p1, ..., pn if they are all false and I’m
thinking some further true proposition q.10

8This model is not uncontroversial — indeed Deutsch Deutsch (2013) has questioned
whether a possible world is the sort of thing that can be a member of a set or class. How-
ever, as we shall see later, nothing hangs on this modeling assumption. This result can be
formulated, as Prior’s is, in the language of modal quantified propositional logic.

9In epistemic logic we say that a world y is epistemically accessible to x iff every proposition
known at x is true at y. Parallel arguments can be made in the present context with an
analogous universal definition of accessibility, but the existential definition makes some proofs
more straightforward.

10More formally, in quantified propositional logic, we can argue as follows:

1. ((p1∨...∨pn)↔ ∀p(Qp→ ¬p))→ ((Qp1∧...∧Qpn)→ ¬(p1∨...∨pn)∧¬∀p(Qp→ ¬p))
2. ((p1 ∨ ...∨ pn)↔ ∀p(Qp→ ¬p))→ ((Qp1 ∧ ...∧Qpn)→ (¬p1 ∧ ...∧¬pn)∧∃p(Qp∧ p))
3. ((p1∨ ...∨pn)↔ ∀p(Qp→ ¬p))→ ((Qp1∧ ...∧Qpn)→ ∃p(Qp∧(p 6= p1∧ ...∧p 6= pn)))
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2 From Mirimanoff to Prior

These observations naturally lead us to wonder whether other set-theoretic para-
doxes can be turned into corresponding paradoxes in quantified propositional
logic. We have in mind a paradox of naive set theory due to Mirimanoff accord-
ing to which there is no set of all well-founded sets.11 A set is well-founded if it
heads no infinite descending membership chain. A set x that belongs to itself
is not well-founded because it heads the infinite descending chain x 3 x 3 x....
Thus Russell’s paradox shows that there is no set of all sets that are non-well-
founded in this particular way – i.e., there is no set of all non-self-membered sets.
However, there are many other ways in which a set could be non-well-founded.
Take a pair of non-self-membered sets x and y that are members of each other.
Then each of them heads an infinite descending chain, i.e., x 3 y 3 x 3 ... and
y 3 x 3 y 3 .... Or one could have an infinite descending chain of pairwise
distinct sets. And so on.

Mirimanoff argued roughly as follows: suppose W is a set of all well-founded
sets. Then, on the one hand (i) every set of well-founded sets is itself well-
founded. On the other hand, (ii) no self-membered set is well-founded. To
establish (i), note that a set x0 can only head an infinite descending chain
x0 3 x1 3 x2 3 ... if at least one of its members, namely x1 itself heads an
infinite descending chain. So, no set containing only well-founded sets can fail
to be well-founded. For (ii), clearly any self-membered set x heads an infinite
descending chain, namely, x 3 x 3 x.... If W is a set of all well-founded sets,
then, by (i), W is well-founded and thus a member of itself contradicting (ii).

To motivate our paradox in quantified propositional logic, let us return to
our simple possible worlds model. As before, say that a world x is accessible
to a world y, written Rxy, if and only if some proposition thought at x is true
at y. A world x0 is well-founded if and only if it heads no infinite chain of the
form x0Rx1Rx2Rx3.... Call the set of all such worlds W . Is there any world,
w, at which the proposition corresponding to W , and that proposition alone, is
thought? An argument reminiscent of Mirimanoff’s suggests that the answer is
no. On the one hand, (i) only well-founded worlds are accessible to a world w in
which W alone is being thought, which means that w must be well-founded. On
the other hand, (ii) no world belonging to some proposition being thought at
that world is well-founded. To establish (i), note that if W is uniquely thought
at w, then, by definition of accessibility, every world accessible to w is a member
of W . So, w cannot head an infinite chain wRx1Rx2Rx3... for otherwise, x1
would not be well-founded and thus not accessible to w. For (ii), clearly if W is
true at w, then w is accessible to itself and thus non-well-founded. Since, by (i),
w is well-founded, w ∈ W , which means that w belongs to a proposition being
thought at w and is thus non-well-founded by (ii).

11See Mirimanoff (1917).
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3 Another result on the limits of thought

This type of reasoning was thoroughly model-theoretic. However, it turns out
that there is a sentence of the limited language of modal quantified propositional
logic that is true at exactly the well-founded worlds, and thus one can state in
this language that this and only this proposition is being thought.

The language of modal quantified propositional logic is the language that
results from quantified propositional logic when we add a modal operator 2,
which we interpret as “it is metaphysically necessary that.” As before, we also
include a unary propositional operator Q. The standard model theory for this
language takes a model to consist of a set of possible worlds or indexes I, a
relation of relative possibility on I for the interpretation of 2, and a function
that assigns to each index in I a set of sets of worlds in I. This tells us what sets
of worlds lie in the interpretation of Q at the world. Incidentally, it is important
not to confuse the relation of relative possibility used for the interpretation of
2 with R, the relation we officially called “accessibility” at the outset. In this
setting, R relates w and w′ just in case there is some subset J of I such that J
belongs to the extension of Q at w and w′ is in J .

Consider the following sentence:

∃p(p ∧2(p→ ∃q(Qq ∧3(p ∧ q))))

One can show that, in a possible worlds model where the relation of relative
possibility is universal, this sentence is true at a world w if and only if w heads
an infinite chain wRw1Rw2... of members of I. Informally, the sentence says
that the world of evaluation, w, belongs to a set of worlds, X, such that, given
any world x in X, there is at least one set Y corresponding to a proposition
thought at x, which is true at some member of X. In other words, w belongs
to a set of worlds, X, such that every member of X is related by R to some
other member of X. Clearly this can only happen if w belongs to an infinite
accessibility chain of the sort described above.12

It follows that the following sentence expresses well-foundedness:

(γ) ¬∃p(p ∧2(p→ ∃q(Qq ∧3(p ∧ q))))

Given any model of the sort we considered before, the sentence γ is true at a
world if and only if w is well-founded.

Given our observations from the previous section, it follows that no world in
any such model can have γ as the only set in the extension of Q at that world.
For γ expresses the proposition corresponding to W and we know that no world
is accessible to all and only members of W .

Nothing rests on the details of the model theory we have chosen. We can
turn the reasoning from last section into a purely syntactic proof that γ cannot

12The above reasoning assumes that every world is possible relative to every other world,
but the formal derivation of the paradox will only require the principles of S4. To show that
the displayed sentence expresses the set of non-well-founded, without the assumption that
every world is possible relative to every other world, a more subtle argument is required.
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be Q uniquely. In particular, the following is a theorem of modal quantified
propositional logic with S4.

Proposition 1. ` ¬∀p(Qp↔ p = γ)

The proof proceeds by analogy with the steps (i) and (ii) in Mirimanoff’s
paradox. We firstly wish to prove (i): that if p corresponds to a set of well-
founded worlds – which we may formalise as 2(p→ γ) – then any world at which
p is Q uniquely is itself well-founded – formalised 2(∀q(Qq → q = p) → γ):

Lemma 2. ` 2(p→ γ) → 2(∀q(Qq → q = p) → γ).

We rely on instances of schema T (φ → 3φ) and schema 4 (33φ → 3φ).
The proof may be found in the appendix.

We then wish to show (ii): that a world w is well-founded only if it is not
accessible to itself. In other words, a world at which γ is true is a world w which
does not belong to anything thought at w. That is, we wish to prove:

Lemma 3. ` γ → ∀p(Qp→ ¬p).

This lemma makes use of schema T . See appendix for proof.
The proof of Proposition 1 is now immediate. On the one hand we can

infer from lemma 3 that γ → (Qγ → ¬γ), and thus that (Qγ → ¬γ) by
propositional logic. On the other hand from 2(γ → γ) and T , we can infer
from lemma 2, that ∀p(Qp → p = γ) → γ. So, we have ∀p(Qp → p = γ) → γ,
and by universal instantiation that ∀p(p = γ → Qp) → Qγ. But since we
have (Qγ → ¬γ), we cannot have both directions in the biconditional, and we
conclude that ¬∀p(Qp↔ p = γ) by propositional logic.13

Much like Prior’s proposition, λ, given an agent, we have identified a propo-
sition γ, which is not thought uniquely by the agent on pain of contradiction.
But how exactly are the two propositions related? There would be little point
to our observation if they proved to be equivalent to each other. However, they
are not equivalent: in S4, λ is provable from γ, but the converse fails.

Proposition 4. γ ` ∀p(Qp→ ¬p)

This is an immediate consequence of lemma 3. However, it is not difficult to
check that the converse fails:

Proposition 5. ∀p(Qp→ ¬p) 0 γ
13In symbols:

1. Qγ → ¬γ from lemma 3 by logic

2. ∀p(Qp→ p = γ)→ γ from lemma 2 by logic and T

3. ∀p(p = γ → Qp)→ Qγ logic

4. ¬∀p(Qp↔ p = γ) from 1, 2, and 3 by logic
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Recall that λ is true at worlds that are not accessible to themselves, and
thus rules out a very special sort of non-well-foundedness, whilst γ rules out all
kinds of non-well-foundedness. If one can find a non-well-founded world that is
not of the special, accessible-to-itself, kind then there are worlds at which λ is
true but not γ.

It is thus a simple matter to find possible worlds models of the relevant
sort where λ but not γ is validated. Take a possible worlds model in which I
contains at least two worlds a and b where every world is possible relative to
every other world. We can now make each world accessible in the sense of R
from the other but not from itself. One way to guarantee this is by stipulating
that the extension of Q at a is {{b}} and the extension of Q at b be {{a}}. γ will
be false at each a and b, since there is an infinite accessibility chain aRbRaRb...,
but neither of these worlds are accessible to themselves so λ is true at both.

Even if γ and λ are not provably equivalent, one may reasonably wonder
whether, given the actual structure of modal reality, they are nevertheless nec-
essarily equivalent. The above model suggests a sufficient condition on modal
reality for the non-equivalence of λ and γ: that there are a pair of propositions,
p1 and p2, such that it is possible to think p1 uniquely whilst p2 is true and p1
false, and possible to think p2 uniquely whilst p1 is true and p2 false, then it’s
possible that λ is true and γ false. Indeed, in S5 one can prove the following:

Proposition 6. 3(∀q(Qq ↔ q = p1) ∧ p2 ∧ ¬p1) ∧3(∀q(Qq ↔ q = p2) ∧ p1 ∧
¬p2) → ¬2(λ→ γ)

This suggests that γ and λ are genuinely different and not necessarily equiva-
lent propositions.14 So, our adaptation of Mirimanoff’s paradox to the language
of modal quantified propositional logic results in further information on the lim-
its of thought beyond what we learnt from Prior’s original observation.

4 Appendix

Here we sketch the outline of a proof of lemmas 2 and 3 in modal quantified
propositional logic with S4.

We begin with lemma 2, which reads:

2(p→ γ) → 2(∀q(Qq → q = p) → γ).

Steps that can be filled in using ordinary quantificational reasoning are omitted.
To show our claim it suffices to prove:

(∀q(Qq ↔ p = q) ∧ ¬γ) → 3(p ∧ ¬γ)

For if this conditional is provable then it is necessary: 2((∀q(Qq ↔ p = q) ∧
¬γ) → 3(p ∧ ¬γ)), and so one can conclude 3(∀q(Qq ↔ p = q) ∧ ¬γ) →

14It is interesting to note that in some sense, λ is just the demodalisation of γ. If one deletes
the modal operators appearing in γ on gets the formula ¬∃p(p∧(p→ ∃q(Qq∧(p∧q)))), which
by inspection is logically equivalent to ∀p(Qp → ¬p). This suggests that in the special case
where there is only one possible world, the two paradoxes coincide.

7



33(p ∧ ¬γ), which implies 3(∀q(Qq ↔ p = q) ∧ ¬γ) → 3(p ∧ ¬γ) in S4. The
lemma follows by contraposition and applying duality and the de Morgan laws.

The antecedent amounts to the following two claims:

1. ∀q(Qq ↔ p = q)

2. ∃r(r ∧2(r → ∃q(Qq ∧3(r ∧ q))))

Claim 2 says that some truth, r, necessitates the claim that something Q is
compossible with r. It follows that in fact, something Q is compossible with
r. Since, by 1, p is the only Q proposition, it follows that p in particular is
compossible with r.

3. 3(p ∧ r)

Moreover, given that r necessitates the claim that something Q is compossible
with r, it’s necessary that it necessitates this claim, by S4:

4. 22(r → ∃q(Qq ∧3(r ∧ q)))

Given 3 and 4 we can infer:

5. 3(p ∧ r ∧2(r → ∃q(Qq ∧3(r ∧ q))))

using the inference from 3A and 2B to 3(A ∧B). Now 5 entails

6. 3(p ∧ ∃r(r ∧2(r → ∃q(Qq ∧3(r ∧ q)))))

using existential generalization, and the fact that we can apply logic inside the
scope of 3. 6 is just the required 3(p ∧ ¬γ).

On to now a sketch of a proof of lemma 2:

γ → ∀p(Qp→ ¬p).

Firstly note that one can prove, using the T axiom:

1. 2((Qp ∧ p) → (Qp ∧3((Qp ∧ p) ∧ p)))

Applying existential generalization to p in the consequent gives us:

2. 2((Qp ∧ p) → ∃q(Qq ∧3((Qp ∧ p) ∧ q)))

So by propositional logic:

3. (Qp ∧ p) → ((Qp ∧ p) ∧2((Qp ∧ p) → ∃q(Qq ∧3((Qp ∧ p) ∧ q))))

Applying existential generalization in the consequent to (Qp ∧ p) gives us:

4. (Qp ∧ p) → ∃r(r ∧2(r → ∃q(Qq ∧3(r ∧ q))))

Or, equivalently, (Qp ∧ p) → ¬γ. Contraposing and generalizing in p we get 5
from which 6 and 7 follow:

5. ∀p(γ → ¬(Qp ∧ p))

6. γ → ∀p¬(Qp ∧ p))

7. γ → ∀p(Qp→ ¬p))
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